手机浏览器扫描二维码访问
Weaviate是一个向量搜索引擎数据库,它专注于连接和管理分散的数据,并通过语义链接来
解析和查询这些数据。
它的主要功能包括语义搜索、数据链接和知识图谱构建。
Weaviate的关键
特性包括机器学习集成,支持多种相似度度量,如欧氏距离和余弦相似度,以及可扩展性。
Weaviate的主要用途是帮助开发者构建智能应用程序,利用其强大的语义搜索和数据关联功能
从而实现更智能、更个性化的数据检索和推荐。
其特点包括开源、高度可扩展、语义搜索功能强
大、支持多种数据类型和格式等。
这使得Weaviate在处理大规模复杂数据集时表现出色,特别适
用于智能问答、搜索引擎和图像识别等领域。
本章介绍了向量知识库在信息检索和数据管理中的具体优势,随后介绍了向量知识库的构建,
是提取分割文本,嵌入向量,随后构成向量知识库。
给出了embedding的原理以及给出了使用
embeddingAPI将数据变成向量的代码示意,经过向量化的数据,将其存入Pipee,后将数据
库与Weaviate相连,完成语义搜索、数据链接和知识图谱构建
术是一种结合了检索和生成机制的深度学习框
架,用于增强语言模型的性能,尤其适合于构建特定领域的专业大模型。
这一技术通过从大规模知
识库检索相关信息,然后将这些信息融入生成过程中,来生成更准确、更丰富的响应。
本节将详细
阐述如何使用RAG技术基于通用大模型搭建电力生命周期评估(LCA)领域的专业大模型。
RAG技术核心在于将传统的语言生成模型与信息检索系统结合起来。
这种结合不仅使模型能够
生成语言,还能从大量的文档中检索到具体的事实和数据,从而提供更加精确和详细的生成内容。
RAG的工作流程大致可以分为以下几步:
查询生成:根据输入,如一个问题或提示,生成一个查询。
文档检索:使用生成的查询在知识库中检索相关文档或信息。
内容融合:将检索到的信息与原始查询融合,形成新的、丰富的输入。
答案生成:基于融合后的输入,使用语言生成模型生成最终的文本输出。
先前已经构建好了针对电力LCA领域的专业大模型,但是缺少检验模型的手段,即缺少模型优
化环节,本项目设置通过Chatbot模式,通过与用户进行问答的形式,检验模型是否能调用电力行
业LCA领域向量数据库回答该领域专业性问题和时效性问题的有效性。
Chatbot模式的测试不仅可以验证模型的知识覆盖范围和答案的准确性,还可以评估模型的用
户交互能力。
这种测试模拟真实用户与模型的交互,可以揭示模型在理解和生成回应方面的潜在问
题。
测试流程包括以下几个步骤:
测试设计:根据目标领域定义测试用例,包括典型问题、边缘情况和错误输入。
普通人只要有机会,也可以封侯拜相。看王子枫一个普通的小人物,如何抓住机会搅动风云。每个人都可能是千里马。...
精神发疯文学,没有原型,没有原型,没有原型(讲三遍),请不要在评论区提真人哦。金手指奇大,cp沈天青。日六,防盗八十,上午十一点更新江繁星八岁时候看见律政电视剧里的帅哥美女环游世界谈恋爱...
叶峰一踏上官梯就遇到两类险情一是多种危险的感情,二是各种惊险的官斗。叶峰三十六岁就被提拔为县教育局副局长,从报到那天起就被卷入这两种险情的惊涛骇浪中。他是草根出生,却有顽强的意志和搏击风浪的能力,他像一叶小舟在惊险莫测的宦海里沉浮出没,劈波斩浪,扬帆远航,步步高升。...
他们都是草根出生,凭自己的努力走上仕途,但一个清廉,一个腐败,于是一见面就成了格格不入的对手...
林风因意外负伤从大学退学回村,当欺辱他的地痞从城里带回来一个漂亮女友羞辱他以后,林风竟在村里小河意外得到了古老传承,无相诀。自此以后,且看林风嬉戏花丛,逍遥都市!...
官场是什么?官场是权力的游戏。官场远比江湖更为险恶。千帆竞渡百舸争流!跨过去那就是海阔任潮涌风劲好扬帆!官场的规矩是什么?正确就是官场的最大规矩!重活一世。刘项东洞悉一切。他不仅能正确,还会一直正确下去!重生是风自身为鹏大鹏一日同风起,这辈子,我刘项东要扶摇直上九万里!...